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Magnetic instabilities of a rotating gas 
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We explore two types of instability which may develop when a highly conducting gas 
rotates rapidly in the presence of a radial gravitational force and an azimuthal mag- 
netic field. Beyond a critical radius (equal to twice the isothermal scale height) 
a decrease of magnetic flux (per unit mass) outwards leads to the appearance of east- 
ward-propagating waves by the mechanism of ‘ magnetic buoyancy’. Within the 
critical radius an increase of magnetic flux outwards leads to westward-propagating 
waves by a totally different mechanism. Provided that the effects of Ohmic dissipation 
are not too large, either instability may set in for quite modest magnetic flux gradients, 
even when the magnetic energy of the system is very much smaller than the rotational 
energy. 

1. Introduction 
Consider a horizontal layer of perfect gas at  rest in the presence of gravity g and 

a horizontal magnetic field B(z) in the z direction. Let the gas be inviscid and a perfect 
conductor of both electricity and heat, so that a moving fluid parcel immediately 
adjusts its temperature to that of its surroundings. The original temperature field is 
then unaltered by any subsequent motion, and if we take for simplicity an isothermal 
basic state, the pressurep and densityp are related throughout that motion byp  = a2p, 
where the isothermal sound speed a is constant. The basic balance is magnetostatic: 

d ( p  + +,u-lB2)/dz +pg = 0, (1 .1)  

where ,u denotes the magnetic permeability. If we now consider instead a field 
distribution B(y, x )  in the form of a thin magnetic flux tube at  some particular height, 
the total pressure p + +,u-lB2 must be the same both inside and just outside the tube. 
The fluid pressurep must therefore be somewhat smaller inside the tube (where B =+ 0) 
than just outside, the same is therefore true of the density, and the tube tends to rise, 
This mechanism of ‘magnetic buoyancy’ was pointed out by Parker (1955) and 
Jensen (1955)) and has subsequently been much discussed in connexion with the 
dynamics of the upper layers of the sun (see, for example, Parker 1976). Note that 
our assumption here of infinitely fast diffusion of heat has filtered out conventional 
buoyancy forces that would otherwise arise owing to the vertical entropy gradient. 

t Present address : Jesus College, Oxford. 
1 Present address: Macmillan Press, 4 Little Essex Street, London. 
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Gilman (1970) showed that when B(z) decreases continuously with height this 
mechanism of magnetic buoyancy renders the system unstable to disturbances 
whose wavenumber component k in the x direction is such that 

--- a logB > k2. 
a2 dz 

The case k = 0, for which the motions are two-dimensional and carry flux tubes bodily 
about without distorting them, requires separate consideration, and Gilman & Cadeq 
(in an appendix to Gilman 1970) showed that such instability is possible only if the 
magnetic field falls off with height faster than the density, i.e. 

This criterion may be easily interpreted physically in terms of an elementary inter- 
change argument (appendix A), but a physical explanation of (1.2), and why disturb- 
ances with k small but non-zero are the most readily amplified, is more intricate. 
Essentially a little twisting is helpful, since it permits the flow of fluid down the rising 
portions of the distorted flux tubes to the sinking portions, which enhances the 
magnetic buoyancy effect (Parker 1955), while too much twisting (i.e. k too large) 
results in the restoring forces arising from the ‘elasticity ’ of the field lines outweighing 
the magnetic buoyancy effects. 

The real starting-point for the present investigation is Gilman’s extension of this 
analysis (locally) to a uniformly rotating spherical body of gas. He found that the most 
unstable modes were of short wavelength in the y direction (i.e. northwards), so that 
only the component of rotation perpendicular to gravity (Q sin 8, where 0 is the polar 
angle) was significant. He examined in detail the particular case B a pb (i.e. Alfvhn 
speed constant with height) and showed that rotation completely stabilizes the system 
against magnetic buoyancy when 

(1.4) 
where H = a2/g is the isothermal scale height. For astrophysical applications of the 
theory to the radiative interiors or convective envelopes of stars (see 96), the most 
important parameter regime appears to be 

where typical values of the Alfven speed V and radius r are to be taken. Thus (1.4) is 
usually well satisfied (by many orders of magnitude), except possibly very close indeed 
to the surface of a star, where H -g r .  

The main result of the present paper, in the above context, is that if B decreases 
with height faster thanp (which Gilman’s B distribution did not) rapid rotation of this 
kind does not stop magnetic buoyancy instabi1ity.t In  fact we study a somewhat more 
general cylindrically symmetric basic equilibrium state with an azimuthal magnetic 
field B(r), uniform rotation and a gravitational body force directed normal to the 
rotation axis. This permits account to be taken of curvature effects, and also allows 
some (though regrettably few) results to be derived (in $4)  on other than a ‘local’ 

f This has also been noted by Professor H. K. Moffatt in $ 10.7 of his forthcoming mono- 
graph Magnetic Field Generation in Electrically Conducting Fluids, and by Professor P. H. 
Roberts and Professor K. Stewartson in an unpublished earlier version of the paper by them 
referenced and briefly discussed in $ 6 .  

v 2 / Q 2 H 2  < 8 sin2 8, 

V2 < Q2r2 < a2 5 gr, (1.5) 
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basis. In the rapidly rotating parameter regime described by (1.5) the system is 
unstable provided only that 

and non-axisymmetric waves which travel azimuthally with a slow angular propaga- 
tion speed 

then spontaneously amplify with a growth rate comparable to their frequency 
N Vz/s1r2. A critical radius, given (implicitly, since g will of course vary with r in 
a prescribed way) by 

thus emerges naturally from the stability analysis, and is in fact that radius at which an 
isolated magnetic flux ring would sit in equilibrium, its tendency to rise by magnetic 
buoyancy being exactly balanced by its tendency to collapse owing to the ‘magnetic 
hoop stress’ B2/pr arising from the curvature of its magnetic field lines.? The local 
stability properties of the system evidently depend crucially on whether the region 
under discussion lies inside or outside the critical radius. Outside the critical radius 
a modest decrease of B/pr outwards leads to magnetic buoyancy instability in the 
form of eastward-propagating waves. Inside the critical radius a modest increase of 
B/pr outwards leads to westward-propagating waves by a totally different instability 
mechanism. 

It is important to note that the instability criterion (1.6), valid in the parameter 
range ( 1 4 ,  is independent of the rot,ation rate s1, so that the system as it stands can- 
not be stabilized by rotation, however rapid. To be sure, the growth rates are of order 
V2/51~2 and thus diminish as 52 increases, but to suppress the instability altogether 
by rapid rotation requires the inclusion of Ohmic dissipation in the model ($5). In $ 6 
we discuss very briefly the more subtle role that diffusive effects may play if, in addi- 
tion, the thermal diffusivity K is given a large, but finite, value so that the gas is no 
longer a perfect thermal conductor. 

rc = 2a2/g, (1.8) 

2. Mathematical formulation 

are 
Given the assumptions of $ 1 the basic hydromagnetic equations for our problem 

(2.1) 

(2.2) 

p(au/L%+u.Vu) = - v ~ + p - - ~ ( V  A B) A B+pg*, 

aB/at = V A (u A B), 

t The pressure in the flux ring is lower than that of its surroundings by B2/2p, its density is 
therefore lower by B2/2,uaz, so the magnetic buoyancy force is gB2/2pa2. This is in balance 
with B2Ipr when r = rc.  Placed inside T ,  such an isolated flux ring would collapse, while if 
placed outside r = rC the curvature of the magnetic field lines would be too weak to prevent the 
ring from rising under its own magnetic buoyancy. This significance of the critical radius was 
apparently first recognized by Weiss (1964) (but see also Jensen 1955), and has been discussed at 
length in an extensive study of magnetic buoyancy instability, mainly in the case of zero or low 
rotation, I)y Cadez (1974). 
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V.B = 0, (2.3) 

(2.4) a p p t  + v. (pu) = 0, 

p = a2p. (2.5) 

Herep denotes the fluid density, u the Eulerian velocity, p the pressure, p the magnetic 
permeability, B the magnetic field, g* gravity and t time. We shall study the stability 
of the equilibrium configuration in which the fluid rotates with uniform apgular 
velocity Q and is at  uniform temperature T, so that the isothermal sound speed 
a = (RT)$ (where R is the gas constant) is constant. Referring all quantities to a set 
of cylindrical polar co-ordinates ( r ,  0, z ) ,  the basic magnetic field, pressure and density 
distributions 

B = { O , W ,  01, P = P(97 p = p ( r )  (2.6) 

represent an exact solution of the basic equations in the presence of a radial gravita- 
tional force g* = { - g*(r),  0 , O )  provided that 

and, of course, l)W = a 2 m .  (2.8) 

If we slightly disturb the system the linearized forms of (2.1)- (2.5) admit solutions 
in which (by virtue of the equilibrium configuration) all perturbation quantities q5 may 
be written as 

4 = a[~(r)expi(m8+nz-at)] ,  (2.9) 

where m, n and a are constants. The last of these (which may be complex) represents 
the frequency of oscillation as seen by an inertial observer, and it proves convenient 
to define a Doppler-shifted frequency 

w = a-mQ, (2.10) 

which is that measured by an observer rotating with angular velocity Q. It is con- 
venient also to define the Alfven speed 

(2.11) 

(2.12) 

the 'apparent' gravity g = g* - Q2r and the local azimuthal wavenumber k ( r )  = m/r. 
After a great deal of algebra, which we omit here, it is possible to eliminate all perturba- 
tion variables in favour of the radial velocity component fir, which satisfies the 
equation 

[ (pc2 + f) rail ' + rFar = 0, (2.13) 

where a prime denotes differentiation with respect to r. 
Here P and h are comparatively simple functions of r given by 

A(r) E w4-(k2+n2)c2w2+ V2k2a2(k2+n2), (2.14) 

and p-'P(r) = n2V%2(d-a%2) +a2n2V2d+d{(k2+n2) w2- V2k4). (2.15) 
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Unfortunately F is very complicated indeed, being given by 

where the subsidiary parameters Q and E are defined by 

p-l&(r) = 2Roka2(~2 - V2k2) - - ( c 2 d  - V2k2a2) 
n2 V 2  

r 

- ( g  -;) {[u2(k2+n2) +n2V2]w2-a2k2V2(k2+n2))  (2.17) 

and 
2SLwka2 

r 
{wz- Vz(k2+n2))-- (03 - V2k2) 

+ 4C12w2(w2 - k2V2 - n2c2) + (w2 - V2k2) (k2 + n2) 
4Clwkr~~a2 V2 

r 
- 

n2 V 2  
r2 

+- g-- { 3 n 2 V 2 ~ 2 + a 2 ( k 2 + n 2 )  (w2- V2k2)}+-  [u2w2+2V2(w2-a2k2)]. 

(2.18) 

An eigenvalue problem €or w results if we append suitable boundary conditions to 
(2.13), e.g. &,, = 0 at r = rl and r = r2. Such is the complexity of the coefficients of the 
differential equation, however, that only a few general results have been obtained, and 
these will be reported in 54. The next two sections will deal with axisymmetric and 
non-axisymmetric disturbances, respectively, almost entirely on the basis of a ‘local ’ 
or ‘narrow-gap’ analysis in which we confine attention to the neighbourhood of a 
particular radius, ro say. We assume that all variables in the equilibrium state vary 
with radius by a factor of O(1) over a radial distance O(ro),  but that perturbation 
variables (such as ur), while having azimuthal wavelengths 2 r / k  also O(ro), have very 
short radial and axial wavelengths, O ( d )  say, where d < ro. Thus with error O(d/ro) we 
may replace (2.13) by 

r n;2) 

(pc2  + fi) a: +Fa,. = 0, (2.19) 

and by expanding the coefficients in a Taylor series about r = ro they may be replaced 
by their values at r = ro with the same error O(d/ro) .  The equation then admits solutions 
of the form a,, cc sin Z(r - ro) ,  where 1 is the local radial wavenumber. Such a solution 
would, incidentally, be compatible with narrowly spaced cylindrical boundaries at  
r = ro and r = r,+n/l. We then have the extremely complicated algebraic equation 

(2.20) 

to deal with, and confine attention to locating (approximately) those roots w which 
as d/ro+ 0 do not depend on d itself. It is our hope that the physical properties of such 
modes are relatively insensitive to the ‘ short-wavelength ’ or ‘local ’ approximations 
which we have been forced to make. Thus by taking the limit n+co in (2.14)-(2.18), 
P ,  A,  Q and E all simplify considerably and become O(n2) while F and P / h  become 
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O(1). To retain the first term of (2.20) we formally let Z+co by keeping 1/n constant, 
U( 1). We thereby obtain the dispersion relationship 

A0u4 + A 2 d +  A3w + A ,  = 0,  (2.21) 

where A ,  = (1  + Z2/n2) c2, (2.22) 

A,  = 4 i l  V2k(g - 2a2/r), (2.24) 

(2.25) 

the values of these quantities at r = r, being understood. Since the roots of (2.21) do 
not depend on 1 or n individually but only on their ratio, they must be adequate 
approximations to some of the roots of the original equation (2.20) for sufficiently 
small values of d/r , .  Just how small d/ro has to be will in general depend on the root 
in question, and though vital to the calculations of second-order quantities such as the 
helicity (which we shall present in a later paper) it will not concern us here. 

3. Axisymmetric instability 
When k = 0, (2.21) simplifies considerably, since A ,  = A ,  = 0,  and we obtain 

2a2 V2 

"2 = ( ( 9 - 7 )  [log (31'. 4 4  L2. 
It immediately follows that the system is unstable to axisymmetric disturbances if, 
and only if, 

This is an elementary extension (also noted in a spherical-geometry context by Cadez 
1974) of a result due to Schubert (1968) to include rotation, which appears in a very 
simple and stabilizing way. As Schubert noted, whether given magnetic field and 
density distributions tend to destabilize the system or not depends very much on 
whether the region being discussed lies inside or outside the critical radius r, = 2a2/g. 

In order to understand the energetic aspects of the instability imagine two thin rings 
of fluid centred on the rotation axis, at radii r, and r, + Sr respectively, which are to be 
interchanged in such a way that each assumes the volume vacated by the other. 
During the interchange each conserves its own mass and magnetic flux (the fluid is 
perfectly electrically conducting and therefore Alfv6n's theorem holds) and remains 
at temperature T. These conditions suffice for the calculation of the net changes in 
gravitational potential, magnetic and internal (elastic) energy after the interchange, 
which are respectively given by 

AEpot = gAK, (3.3) 

(3.4) 

(3.5) 
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We have here introduced for convenience 

where go is the original volume of the ring that started at r = ro. The details of the 
calculation are rather heavy and are postponed to appelldix B. It is physically instruc- 
tive to compare the sum ( - 2aZ/r) A K  of the magnetic and internal energy changes 
with the potential energy change (3.3), for this brings out the importance 6f the critical 
radius from another point of view. Evidently in circumstances when (in the absence of 
rotation) (3.2) predicts instability our interchange calculation displays a net release 
of energy. 

Outside the critical radius a distribution of B/pr  decreasing outwards promotes 
instability by magnetic buoyancy; the instability releases magnetic and gravitational 
potential energy but absorbs internal (elastic) energy. The simplest illustrative case is 
well beyond the critical radius, where curvature effects are unimportant [formally let 
r - f m  in (3.3)-(3.6)], and the contributions (3.4) and (3.5) cancel, so that theinstability 
occurs simply to release gravitational potential energy stored in the basic state. 

Inside the critical radius a distribution of B/pr increasing outwards promotes 
instability of a quite different kind; the instability releases magnetic and elastic energy 
but absorbs gravitational potential energy. The simplest illustrative case is when the 
isothermal sound speed is very large, for instability then essentially releases only 
magnetic energy due to the ‘hoop stress’ arising from the field-line curvature. This 
instability mechanism is possible in an incompressible fluid of constant density (see, 
for example, Acheson 1972), while magnetic buoyancy is not. 

Equation (3.2) shows that uniform rotation of the whole system has a stabilizing 
influence, and it in fact totally suppresses both kinds of axisymmetric instability in the 
parameter regime (1.5) of most astrophysical interest. This is because the amount of 
available energy of the kind discussed above is then diminutive compared with the 
amount of work needed to effect the increase in rotational kinetic energy 

AE,,, = 4Q2K (3.7) 

implied by the fact that each ring must conserve its angular momentum as it moves. 
This is because no axial torque acts on either ring, which in turn follows because (i) the 
gravitational force is purely radial, (ii) the gas is inviscid, and (iii) there is no component 
of the Lorentz force (V A B) A B in the azimuthal direction because axisymmetric 
disturbances do no twist the field lines and B itself therefore remains in that 
direction. 

4. Slow wavy instabilities at rapid rotation speeds 
Drawing on the analogy between some of the results so far (particularly those valid 

inside the critical radius) and those for the corresponding stability problem for an 
incompressible liquid of constant density (Acheson 1972), we are led to explore the 
possibility that at rapid rotation speeds satisfying (1.5) instability may occur in the 
form of non-axisymmetric waves of low frequency w - V2/52r2. If we seek such solutions 
to (2.21) in the parameter regime (1.5) the coefficient A ,  simplifies enormously to 
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- 4Q2c2, and the term A,w4 is discarded altogether. The resulting quadratic is easily 
solved to give, on using (2 .7 ) ,  

a.nd inst,trbility thus occurs in the assumed way for modes satisfying 

($-s) Fog (:)I' > (1 +;) k2. 

(4.1) 

Comprtring (4 .2)  and (3 .2 )  we see that exactly the same remarks about the types of 
configuration which promote instability (i.e. (Blpr) '  < 0 outside the critical radius, 
(Blpr)' > 0 inside) still apply: the essential difference is simply that the enormous 
stabilizing term due to rotation, 4Q2,  has completely disappeared and been replaced 
by a much smaller one (by a factor of order V2/Q2r2)  on the right-hand side of (4 .2) .  
Evidently the azimuthal component of the Lorentz force brought about by the twisting 
of the (originally) azimuthal magnetic field lines breaks, most effectively, the constraint 
that each ring (which now gets slightly distorted, of course, during its motion) must 
conserve its angular momentum. In place of the enormous amount of work needed to 
effect the implied increase in rotational kinetic energy (3 .7 ) ,  all that is now needed 
is a comparatively modest amount,represented by the right-hand side of ( 4 4 ,  to twist 
the azimuthal field lines against the resistance of their own 'magnetic hoop stress ', 
which increases with the amount of twisting, whence the factor k2. 

Thus an O ( 1 )  gradient (of appropriate sign) of the magnetic flux per unit mass B/pr  
is quite sufficient for the spontaneous amplification of low frequency waves with 
azimuthrtl wavenumber m N 1 ,  i.e. k N rgl .  Their growth rates are typically comparable 
with the frequency, N V2/Qr2.  The direction of propagation evidently depends, like 
so much else here (!), on whether the region under discussion lies inside or outside the 
critical radius. Inside the critical radius we find from (4 .1 )  that Qkw, < 0, and the 
slow waves propagate westwards as in the incompressible, constant density case 
(Acheson 1972). In  complete contrast to this, outside the critical radius amplifying slow 
waves propagate eastwards. 

We have already remarked that the complexity of the coefficients in (2.13) makes 
stability analysis on anything but a 'local' basis extremely difficult, but this eastward 
propagation of slow amplifying waves outside the critical radius is one result which can 
be established globally, as we now show. By restricting attention to the slow waves 
that occur at rapid rotation speeds, i.e. taking w - V2/Rr2 g V / r  < R g a/ r  5 g/a, 
but not making any short-wavelength approximations, (2.13) simplifies to 

[rpV2k2Qi/(k2+n2)]'+rF,Q, = 0, 
where 

p-1F * = V2k2( 4Q2w2n2 k2 + n2) 2k2 +(1+?)(;-$)} 

(4.3) 
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We multiply ( 4 . 3 )  by ii,., the complex conjugate of a,., andintegrate between cylindrical 
boundaries r = rl and r = r2 (at which G,. must vanish) to obtain 

Writing w = wR + iw, and equating the imaginary part of (4.5) to zero we find 

and at  once conclude that if r > 2a2/g throughout the interval rl < r < r2,  i.e. if the 
whole fluid lies outside the critical radius, then any amplifying slow mode must have 
Qkw, > 0, i.e. must propagate eastwards, for if this were not so the integral could not 
possibly vanish and we should have a contradiction. 

It is interesting (but, when one puts in values for the sun, of lesser importance, since 
re is about one-fifth of the solar radius) that it does not seem possible to make such 
a strong statement if the whole fluid lies inside the critical radius. It is easy to show 
from (4 .6 )  that amplifying slow modes with k/n  such that 

is satisfied propagate westwards, but no matter how small r2 is compared with the 
critical radius 2a2/g  we can always find modes with sufficiently large k2/n2 that they 
will not satisfy ( 4 . 7 ) .  It is nevertheless noteworthy that kln does not have to be very 
small before, for all practical purposes, (4 .7 )  may simply be taken to read r2 < 2a2/g.  
This is because on expanding the right-hand side in powers of k2/n2 it approximates 
to (1 - &k4/n4) 2a2/g  and differs from 2a2/g only as the fourth power of kln. 

5. Effects of Ohmic diffusion on the wavy instabilities 
A weakness of the preceding theory is that if the magnetic field gradient is gradually 

changed so as to promote instability the mode which is first to amplify spontaneously 
has, according to ( 4 . 2 ) ,  an infinite value of n, i.e. zero wavelength in the z direction! 
As may readily be imagined, no such difficulty arises if the effects of Ohmic dissipation 
due to a finite electrical conductivity are taken into account. Equation ( 2 . 2 )  must 
then be modified by the inclusion of a term rV2B on its right-hand side, where the 
magnetic diffusivity 7 is defined as (gp) - l .  At rapid rotation speeds satisfying (1.5) the 
amplifying waves ( 4 . 1 )  have such low frequencies that the acceleration term au/at in 
the momentum equation ( 2 . 1 )  is negligible (by a factor of order V2/Q2r2) compared 
with the others. Time dependence thus enters explicitly only in the induction equation 
( 2 . 2 ) ,  and this allows us to modify ( 4 . 1 )  by inspection to include the effects of Ohmic 
diffusion : 

ir(Z2+n2)+- ikv2( ( :  2!2 --- :2) pog($)]’-(l+;) k2)’, (5 .1)  

bearing in mind that we have taken both I and n to be much larger than r-l but k to 
be ( O r 1 ) ,  The wave is then marginally stable when 

( 5 . 2 )  
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The right-hand side clearly takes its least value when I is as small as possible, and 
when the fluid is confined between two narrowly spaced cylinders this will be n l d ,  
where d is the gap width. It is convenient to introduce the parameter 

v2 d2 
ve -x - ,  

2Ry  r2 (5 .3 )  

which provides an inverse measure of the importance of Ohmic diffusion. While the 
parameter V2/2Qy  usually plays this role (see, for example, Acheson I% Hide 1973), 
the short radial and axial wavelengths here increase the ratio of Ohmic decay rate to 
slow wave frequency [the latter being independent of d ;  see ( 5 . 1 ) ] ,  so that it needs to 
be weighted by the factor d2 / r2 .  We may formally minimize the right-hand side of (5 .2)  
by differentiation to obtain, apparently, the critical mode 

n2 = n2/2d2, m2 = n2 J 3 / W  (5.4) 

and the corresponding critical value of the instability parameter 

The procedure is, however, a little crude in that the azimuthal wavenumber m ought 
really to be an integer. When < 1 ,  which corresponds to rather strong Ohmic damp- 
ing, little error should be expected if we simply take the nearest integer to the value 
given by (5.4) as the ‘true’ value of m, and ( 5 . 5 )  indicates that instability will then 
occur only for magnetic field gradients far steeper than those which would be required 
according to  the diffusionless theory. Even with %‘ of order unity (5.4) and (5 .5 )  
probably remain valid as rough order-of-magnitude guides. 

In  the weakly diffusive regime V? 9 1 ,  however, the above procedure attributes to m 
a physically impossible low value (which is not properly interpreted as zero: axi- 
symmetric disturbances are far less readily excited, as 9 3 showed), and further investi- 
gation reveals that the correct procedure then is to take m = 1 and minimize by 
differentiation with respect to n. The critical mode thus obtained is 

and the instability criterion essentially becomes 

r t ( f - 5 )  [log (’)I’ > 1.  (5.7) 

The latter is independent of y, so that weak Ohmic diffusion such that V > 1 serves 
only to keep the wavelength in the z direction of the critical mode at  a finite, though 
small, value. 

6. Discussion 
We shalI confine our concluding remarks mainly to the bearing which the above 

results have on the stability of the local plane-layer model discussed in the introduc- 
tion and by Gilman (1970).  This has the merit of removing curvature effects (it is 
equivalent to being located well outside the critical radius in the cylindrical model) 
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and highlights magnetic buoyancy as the instability mechanism. Either by modifying 
(4.1) appropriately or by investigating directly Gilman’s equation (21) in the ‘slow 
wave’ limit, i t  is clear that a decrease of B/p  with height is the essential requirement 
for instability at rapid rotation speeds in the plane-layer case. Eastward-propagating 
waves of azimuthal wavelength h somewhat greater than a scale height then amplify 
with growth rates ( N V2/Rh2)  which decrease with R. The instability can neverthe- 
less be actually cut off at  a finite large rotation speed only if Ohmic dissipation is 
included in the model, as may be seen by letting r + 00 (with k = m/r finite) in (5.4) 
and (5.5). 

A recent study of the plane-layer problem by Roberts & Stewartson ( 1  977) leads 
us to expect that diffusive effects may play a more subtle role in our system if in 
addition to taking q =/= 0 we take the thermal diffusivity K 8 a. This has the effect of 
bringing back into play, to an extent that depends on K-1, the conventional buoyancy 
forces that arise in a compressible fluid from a vertical entropy gradient, and which in 
the case of an isothermal atmosphere can be very significant indeed. Roberts & 
Stewartson show that a layer with B oc p* (constant Alfvbn speed), though stable in 
the rapidly rotating regime ( 1  5)  according to the theory with q = 0 and K = co, may 
nevertheless be subject to a ‘conductive’ instability when the product KT is suffici- 
ently small. Low-frequency (w  - V2/!2h2) waves then amplify on the Ohmic time 
scale.? 

We finally note that in the other extreme of no conductive or radiative heat Dransfer, 
i.e. K = 0,  the stability equation (2.21) undergoes simple modification. One needs only 
to replace a by the (local) adiabatic sound speed, redefine c accordingly, add to A ,  

(9 + 2 V 2 / r )  a 2 [ k  (w-V‘ 
and add to A ,  

V2k2ga2[log ( p p ’ ) ] ’ ,  

where y is the ratio of specific heats. This emphasizes, it seems to us, how only by 
virtue of an entropy gradient in the basic state, which will depend on the radial 
temperature distribution T ( r ) ,  may the simplifying assumption K = m lead to results 
atypical of more weakly conductive systems. While we therefore hope that some of our 
conclusions about magnetic buoyancy apply to the upper layers of the sun, where 
a more or less adiabatic temperature gradient may reasonably be anticipated, this 
can of course be decided only after further work. 

We are very grateful to Professor H. K. Moffatt, Professor P. H. Roberts, Dr C. A. 
Jones and Dr N. 0. Weiss for helpful discussions. One of us (D. J. A.) wishes to thank 
the C.E.G.B. for a Research Fellowship, and the other (M. P. G.) thanks the S.R.C. 
for a Research Studentship during the period in which this work was carried out. 

t Note added in proof. The relationship between the theory in the present paper and that of 
Roberts & Stewartson (1977) has now been clarified by some more work on magnetic buoyancy 
instabilities (Acheson 1978). 
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Appendix A. Magnetic buoyancy in a non-rotating horizontal layer 
Consider a horizontal isothermal layer under gravity with K = o o , ~  = 0 and a hori- 

zontal magnetic field varying in magnitude with height z. Imagine that a flux tube of 
cross-sectional area A at a height z is lifted, without being twisted, to z + dz. Let any 
of its properties q5 change to # + a#, and let the local value of # at the height z + dz be 
q5 +d#. Since the mass per unit length p A  and magnetic flux B A  of the tube are con- 
served, the quantity B/p is conserved and 

6B Sp i.e. - = - *  
B+6B - B 
- -- 
P+JP P ’  B P  

For the tube to be in mechanical equilibrium with its new surroundings its total 
pressure p + &p-IB2 must adjust to the local value, whence (to first order) 

Sp + B SB/p  = dp + B dB/p.  (A 2) 

Using (A 1 )  and the fact that p = a2p, where a2 = RT is constant, we may write (A 2) 
as 

(a2 + V z )  Sp = d p  + B dB/p. (A 3) 

If Sp < dp  the tube is lighter than its new surroundings and continues to rise, so the 
condition for instability is 

(A 4) d p  + B d B / p  < (a2 + V z )  dp. 

On using again p = a2p and dividing by dz, we obtain 

-”(”) > 0. 
dz P 

Appendix B. Energetics of axisymmetric instability 
Consider the interchange of two flux rings, denoting the volume and cross-sectional 

area of either at a radius r by [ ( r )  and A(r)  respectively. They are initially at  radii 
r = r,, and r = r,, + dr, and before the interchange the fluid rotates with angular velocity 
Q(r)  (a slight generalization of the case considered in the text) and has constant 
temperature T. As discussed in the main text, the temperature, angular momentum, 
magnetic flux and mass of each ring are conserved during the interchange. Further, 
each ring must be made to occupy the volume vacated by the other (for our inter- 
change argument, which pretends that no other change in the system has taken place, 
could surely have no relevance otherwise), and this can be arranged subject to the 
above constraints only if, having picked arbitrarily the initial volume of the first ring, 
the initial volume of the second ring is chosen in a specific way, which we determine 
in the following subsection. 

Consider any quantity $ (e.g. density) pertaining to a fluid ring. After the inter- 
change denote the new value of # for the ring that was at  ro by and denote the 
new value of q5 for the ring that was at r, + dr by q5,+ Also denote $(r0)  by 9, and denote 
W o + d r )  by $of. 
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Relationship between the initial volumes of the rings 
Each occupies the volume vacated by the other, so 

go = 271r0AB, 6; = 2n(r0 + d r )  AA. 
By conservation of mass 

while by conservation of magnetic flux 

POSO = PA&$, P$&t = PBtO,  

BOA0 = BAA,, BO+ A,$ = B B A B .  

By suitably combining (B l)-(B 3) we obtain 

Since the ring originally at  r = ro must come into mechanical equilibrium with its new 
surroundings and the fluid is isothermal with sound speed a,  

where we are working correct to first order in dr /ro .  Expandingp;, Bof and [of in Taylor 
series correct to that order (i.e. PO+ = p o + p ' d r ,  etc., where the prime denotes differen- 
tiation with respect to r )  and equating first-order terms in (B 5) we obtain, on finally 
using the magnetohydrostatic constraint on the basic state ( 2 . 7 ) ,  

This tells us how the initial volume go + 
chosen in order that each ring occupies the volume vacated by the other. 

dr  of the ring initially at  r = ro + dr must be 

Change in  rotational kinetic energy 
Since angular momentum and mass are conserved by an individual ring, so is the 
quantity 09. In  sn analogous way to the derivation of (B 4)  from (B 2 )  and (B 3)  we 
thus obtain 

The net change in rotational kinetic energy is given by 

axi = *(PI3 Q2, - Po Qt)  gort + *(PA Qz, -Po+ ail2) 5 I a f - o  + w2, (B 8) 
and after using (B 2) and (B 7) to eliminate quantities with suffixes A or B, expanding 
quantities such as <$ in a Taylor series correct to order (dr / ro)2 ,  and finally using (B 6), 
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Potential energy change 

The net change in gravitational potential energy is given by 

8, = g*(dr) ( P o E o - - - P o + m  (B 10) 

and expanding this and applying (B 6) to eliminate 6' then gives 

'G - g*Vz d 
po<o(dr)2 a2+ V2dr [log ( $ ) I '  

Note that we have presented the results for kinetic and potential energy a little dif- 
ferently in the main text, where it is convenient to think in terms of the 'effective' 
gravity g = g* - Q2r. Essentially, from this viewpoint, the second term of (B 9) is 
reckoned as potential rather than kinetic energy and put into (B 11) instead. 

Magnetic energy change 

The magnetic energy per unit volume is B2/2p ,  so the net change in magnetic energy is 

(B 12) 
8 - --(B%-B,+~)+& to+ (B:--B;). 
llf - 2P 2P 

Following the procedures of the previous two subsections, first using (B 4), we obtain 

Internal energy change 

The elastic energy e per unit mass stored in a gas owing to compression is, to within an 
unimportant additive constant, - J p d (  l/p). For our isothermal case this is therefore 
dlogp. Using (B 2), the change in internal energy 

8, = ~~;o'(pae,-p,fe,+)+Eo(p,e,-p,eo) 

81 = a2(pl?E,+ -poEo)log ( E $ / E o ) ,  

can thus be expressed succinctly as 

and by proceeding further as before we find 
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